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ABSTRACT

With the advancement of information technology, more and more data are being col-
lected to monitor the operation of manufacturing systems. This has provided a material
Jfoundation for applying real-time simulation-based optimization to improve the effi-
ciency of complex manufacturing systems. In order to facilitate effective implementa-
tion of simulation-based optimization, in this paper, a unified framework for modeling,
simulating and optimizing complex dynamic manufacturing systems is proposed. The
modeling method, the simulation, optimization and machme ' learning mechanisms are
investigated and presented.

Keywords: dynamic system, real-time data, decision making, simulation, optimization,
machine learning
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INTRODUCTION

Let us start with a real world story. In a large auto manufacturing plant, the production
facility is sophisticated. The shop floor is segmented into different production zones and
areas. In each area, various types of equipment are running, and workers are busy along
the production lines. The material handling systems are moving parts and assemblies
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across the main production lines and sub production lines. The whole system is a com-
plex dynamic system. As the production facility is capital intensive, in order to recover
the high cost and make a profit, the manufacturing system must work efficiently to maxi-
mize its throughput.

To maximize the throughput, the plant needs to keep the equipment running, instead of
being stopped or idle. In other words, the plant must minimize the “down time” (down
time means that some workstations on the production lines stop working for certain
period of time). Down time entails production lost. Therefore downtimes are strictly
managed. Each incident of the downtime is recorded, and root cause analyses are per-
formed.

In order to keep track of the down time, the plant has invested a lot of money and effort
for monitoring the equipment on the shop floor. Advanced sensors and a software system
are used to collect data from the equipment. Huge amounts of data are being collected
and stored into a large database. From .the collected data, the running status of each
piece of equipment on the shop floor can be visualized and displayed on computer screens
in real time. Reports are generated to analyze the down times and evaluate the perfor-
mance of the manufacturing system.

For each workstation, its down time could be “direct down time” or “indirect down
time”. Direct down time could be “equipment error” or “production error”. Equipment
error means that the equipment breaks down due to mechanical or electrical failures.
Production error could be defective parts or human operator errors etc. Indirect down
time means the workstation is either blocked or starved due to the downtime of other
workstations in the upper-stream or downstream.

The plant operation staffs can understand and perform root cause analysis on the direct
down time without problems. However, it is difficult for them to trace the sources of
indirect down times. They cannot clearly understand how the down time in one area
affects the other areas. The existing data collecting software system could not provide
effective help on this problem. According to the plant manager, “no textbook formula is
applicable to our problem”.

For the plant manager, the major concern is to make sure that “right parts arrive at the
right workstations at the right time”. Although it is easy to say, it is not easy to imple-
ment. If a down time happens at any parts of the system, it may propagate to the other
parts of the system. Depending on the current system status, it may or may not cause
problems. It is not feasible to handle exceptions with fixed rules. However, as said be-
fore, there is no effective tool to help the plant operation staffs quickly figure out how
the down time will affect other areas. In cases where multiple down times happen in
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different areas, it is harder to analyze the consequences. Unfortunately, if no appropriate
actions are taken in a timely manner, a small down time may propagate to other areas and
escalate into big problems. When this happens, it is usually too late to effectively take
remedial actions.

In order to get better understanding on the system behavior, the plant has conducted simula-
tion studies with discrete event simulation software systems. The simulation studies reveal
some facts that are contrary to common sense. For example, in certain situations, slowing
down certain production areas might help in clearing some buffers and improve the overall
throughput of the system. This indicates that the system’s overall performance cannot be
achieved by simply letting each production area do their best. Different parts of the produc-
tion system need to work in a cooperative manner, especially when exceptions occur. How-
ever, how to effectively achieve this is the real challenge.

Due to the complexity of the system, even though the plant has a strong interest in finite
capacity scheduling systems to facilitate the manufacturing operations, it is difficult to
find a suitable software package on the market to fit their need. The difficulty comes
from the complex production processes and constraints. For example, the buffer size
constraints are usually not sufficiently considered by the scheduling software systems. As
a result, even though huge amounts of data are available, the plant does not have an
effective tool to make use of the data for guiding the operation decisions.

For a complex manufacturing system, computer simulation probably is the only viable
solution for adequately modeling it. Actually, the plant manager is looking forward to a
“real time simulation” system, which can do simulations based on the real-time data,
look ahead to what is going to happen, perform various what-if analyses, and figure out
the best course of action to guide the manufacturing system operations.

From this real-world story, we can see an acute demand for modeling and simulating complex
dynamic systems to guide the operation decisions. The simulation system needs to:
1. make use of the collected data; thus the simulation results will be relevant to
the real-time operation need.
2. perform different what-if analyses; thus figure out the best course of actions
by comparing different alternatives.
3. perform the simulation and optimization efficiently; thus we can quickly get
optimized results to guide the real-time shop floor control

Motivated by the above requirements, a unified framework for simulating, optimizing,
and controlling complex dynamic systems is developed in this paper.

The rest of this paper is organized as follows. In the next section (No.2), related studies
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in the literature are briefly reviewed. Section 3 describes the modeling method. Section 4
discusses the integrated simulation and optimization engine, and how to integrate this
with the existing information system. Section 5 discusses the knowledge-based machine
learning mechanism. Section 6 discusses how to integrate the simulation and optimiza-
tion with the existing information system. The last section concludes this paper and points
out future research directions.

Section 2: RELATED RESEARCH LITERATURE

To run manufacturing systems efficiently, extensive research effort has been put into the
area of production scheduling (Pinedo, 2012). In general, production scheduling deals
with the problem of allocating limited production resources to the production tasks over
time, with the objective of accomplishing the production tasks in a timely and cost-
effective manner (Smith, 2005).

Scheduling problems has been traditionally studied as a class of combinatorial optimiza-
tion problems (Jain & Meeran, 1999). These problems are notoriously NP-hard (the
hardest of problems; NP = Non-deterministicPolynomial-time). Due to this nature of
these problems, it is very difficult to solve the scheduling problems optimally when the
problem size is large. Various approximation and heuristic methods have been developed
to tackle the combinatorial optimization problems, such as shifting bottleneck procedure
(Adams, Balas, & Zawack, 1988), tabu search (Widmer, 1991), simulated annealing
(Vakharia & Chang, 1990), and genetic algorithms (Biegel & Davern, 1990).

Although significant research effort has been focused on tackling the NP-hard property
of scheduling problems which aims at finding efficient methods to solving scheduling
problem optimally or near optimally optimally, static scheduling solutions are seldom
carried out in the real world of manufacturing practice. Because of the dynamic nature of
the manufacturing systems, an optimized scheduling can quickly become infeasible due
to the constant changes. Therefore, simple dispatching rules (DR), such as SPT (shortest
process time), EDD (earliest due date), FIFO (first in first out), etc. are widely adopted
by the industry in the dynamic manufacturing environments, because of their adaptive
nature, low computation effort, and easiness to implement (Liu, 1998; Min & Yih, 2003;
Mouelhi-Chibani & Pierreval, 2010; Chang, Dong, & Yang, 2013).

As pointed out by many researchers, no dispatching rule dominates other rules in all
circumstances (Wu & Wysk, 1989; Min & Yih, 2003; Metan, Sabuncuoglu, & Pierreval,
2010). That is, one dispatching rule may perform well in some situations, while perform-
ing poorly in other situations. Based on this observation, dynamically selecting different
dispatching rules could be a potential way to improve the performance of the manufac-
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turing system; this has been proven to be effective by different researchers (Wu & Wysk,
1989; Liu, 1998; Metan et al., 2010).

To evaluate the performance of different dispatching rules, simulation study is usually
employed. Actually, due to the complexity and dynamic nature of the real world manu-
facturing systems, simulation is believed to the only feasible approach to study the be-
havior of complex manufacturing systems without over-simplifying them (Wu & Wysk,
1989; Aqlan, Lam, & Ramakrishnan, 2014).

Traditionally, simulation studies are used for evaluating the performance of a production
facility when the facility is newly built or modified. After the production facility is put
into operation, the simulation models are usually thrown away. Wysk and colleague pro-
posed to reuse the simulation models for system control purposes (Son & Wysk, 2001).
This has evolved into an important research direetion that is attracting increasing interest
in the production scheduling and control research area (Wu & Wysk, 1989; Peng &
Chen, 1998; Borenstein, 2000; Son & Wysk, 2001; Arakawa, Fuyuki, & Inoue, 2003;
Guo, Chen, Wang, & Zhou, 2003; Min & Yih, 2003; Dangelmaier, Mahajan, Seeger,
Klopper, & Aufenanger, 2006; Xia, Tian, Sun, & Dong, 2008; Mahdavi, DEL: Shirazi, &
Solimanpur, 2010; Metan et al., 2010; Mouelhi-Chibani & Pierreval, 2010; Hu & Zhang,
2012; Shirazi, Mahdavi, & Solimanput, 2012; Puergstaller & Missbauer, 2012; Chang et
al., 2013; Riegler, Spangl, Weigl, Wimmer, & Muller, 2013; Remenyi & Staudacher,
2014).

Recall the discussion in the beginning that the plant manager is looking forward to a
“real-time simulation” system to guide operation decisions. We can see that the industry
and academic community are actually converging on the same spot: “real-time simula-
tion based optimization”. This is an important shift for the production scheduling re-
search, which has been largely disconnected from industrial practice in the past (Herrmann
& Words, n.d.; Jacobs & Weston, 2007).

Basically, simulation based optimization for real-time control mainly deals with the dy-
namic selection of dispatching rules by evaluating the performance of different rule com-
binations based on the real-time system status. The major challenges for real-time simu-
lation and optimization includes three aspects: modeling effort and flexibility, solution
quality, and computation efficiency.

Firstly, traditional simulation packages usually cannot provide enough flexibility for simu-
lation-based optimization, and the modeling effort is significant. To alleviate this prob-
lem, Borenstein (2000) proposed an object-oriented modeling framework to improve
the flexibility of the simulation model, and Son and Wysk (2001) proposed automatic
generation of simulation models to reduce the modeling effort. How to flexibly and ef-
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fortlessly model the complex manufacturing systems by taking into account the various
alternatives for simulation-based optimization remains an open research issue.

Secondly, although various studies have testified to the effectiveness of simulation-based
optimization for improving the manufacturing system efficiency, simulation-based opti-
mization was often implemented in ad hoc ways by grafting the existing simulation pack-
ages with optimization routines. How to achieve high quality solutions is still not a simple
and straightforward task. Therefore, it would be helpful to rethink the problem. Instead
of handling simulation and optimization as two separated problems, we may need to
consider simulation and optimization as a whole problem, and design a unified solution
to resolve it. With such an improved methodology, we may develop effective and reus-
able software tools to make high quality simulation-based optimization easily achievable.

Thirdly, for real-time control purpose, the simulation-based optimization must produce
optimized rule selections quickly. For a complex manufacturing system, the simulation
often requires heavy computation. Moreover, for optimization purposes, we need to run
multiple simulations to figure out the best rule combinations. To reduce the computation
effort, some researchers proposed to use offline training mechanisms, such as artificial
neural network (ANN), to improve the online computation efficiency (Xia et al., 2008;
Metan et al., 2010; Mouelhi-Chibani & Pierreval, 2010; Shiue, Guh, & Lee, 2012). More
research effort in this direction is needed to make simulation-based optimization practi-
cable.

Based on the above observations, in this study, a unified framework is proposed to
seamlessly integrate simulation; optimization, and machine learning into a total solution
to systematically address the above challenges, and which provides a practical and easily
implementable software tool to help the industry improve operation efficiency through
real-time simulation-based optimization. - -

Section 3: AN OVERVIEW OF THE MODELING SYSTEM

Figure 1 depicts the overall infrastructure of the proposed system, which includes the six
software modules: the simulation-based optimization engine (SBOE), the pre-processor,
the post-processor, the modeler, the controller, and the adapter. Four groups of people
are involved in implementing it in a real manufacturing system: the modelers, the users,
the IT staff, and the developers. In this section, we will briefly introduce the functionalities
of each module, how these modules work together, what are the responsibilities of dif-
ferent groups of people, and how the people willinteract with the system. The following
sections will describe each module in more details.
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Figure 1: System overview
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The Simulation-Based Optimization Engine (SBOE) is the most important module of the
system. The input of the SBOE is the initial state of the system, the output of the SBOE
is the future states of the system. Based on principles of discrete event simulation, the
SBOE simulates the system state changes from the initial state to the future states.

As the major goal of simulation-based optimization is to dynamically select the best rule
combination, for a given initial state, the SBOE needs to evaluate different possible rule
combinations, each of which will lead to a different future state. Hence, there will be
multiple possible future states, from which we need to pick the best one and use it to
guide the real-time control. (There will be more details of SBOE in a later section).

The pre-processor prepares the initial state, which is the input for the SBOE, based on
the static model, the dynamic system status, and the future plan of the system. The post
processor interprets and presents the simulation results (the future states) to the manu-
facturing operation staffs Thus they can get insights into what will happen for the system,
and quickly figure out the best course of actions to handle all kinds of system disruptions.

The controller module receives the optimized results from the post-processor and trans-
lates them into executable instructions for controlling the real system. The adapter mod-
ule interprets the raw data collected from the system, and translates them into meaning-
ful information for representing the current system status, and feeds the real-time system
status information into the pre-processor. Both the controller module and the adapter
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module need to be customized, based on the existing IT system in the real manufacturing
system. (There are more details in a later section).

The modeler module provides a software tool to build the static simulation model, such
as the resource model, the manufacturing system layout, the manufacturing process, etc.
The next section will describe the modeler in more details.

In addition to the six software modules described above, the proposed system has an
object library and a knowledge base. The object library is an extensible collection of
reusable software components for the modeling of manufacturing systems. The knowl-
edge base is used for accumulating decision-making knowledge for improving the com-
putation efficiency and solution quality for the simulation-based optimization. We will
get into more details on the object library and knowledge base later.

The responsibilities of the four groups of people are listed as follows:

1. The modeler: builds the simulation-based optimization model based on the
real system

2. The user: makes use of the simulation-based optimization results for control-
ling the real system

3. ThelT staff: interface the existing IT system with the simulation-based opti-
mization system.

4. The developer: builds and maintain the reusable object library based on the
industry’s need.

The procedure for implementing such a system into a real manufacturing system is de-
scribed as follows:

1. The software system is provided with six software modules, a standard ob-
ject library, and an empty knowledge base.

2. The trained modelers (either employee or consultant of the manufacturing
company) build a simulation-based optimization model based on the real sys-
tem.

3. The IT folks hook up the existing IT system, including the data collection
system and execution system, with the simulation-based optimization sys-
tem.

4. Start up the system: the real-time data are flowing into the system, which
continuously simulates the possible future states of the system, automatically
performs what-if analysis, and figures out the best courses of actions.

5. The users get benefits from the system. With the real-time simulation-based
optimization system, the users will not only know what is going on now, but
also what is going to happen in the near future, and what are the actions to
control the system for the best possible performance.
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6. The system not only provides useful information and insight to the users, but
also helps the users to effectively carry out the actions. The controller soft-
ware module can translate the action plan into to concrete execution instruc-
tions and pass instructions to the execution system.

7. The users are not only information receivers, they are also knowledge con-
tributors. With the post-processor module, the users can not only view the
simulation results, but also give feedback (e.g. rating different future system
states) based on their professional judgment. The feedback will be gathered
into the knowledge base, which will enable the simulation-based optimiza-
tion engine (SBOE) to make smarter decisions, thus the computation effi-
ciency and solution quality can be improved over time.

The above process is not a single shot activity. Instead, it will be an incremental process.
The system begins small. Over time, the model can be fine-tuned, the object library can
be extended and customized, the interface with the existing system can be polished, and
the knowledge base can grow larger. The system will become more powerful, intelligent,
and valuable.

Section 4: MODELING FOR INTEGRATED SIMULATION AND
OPTIMIZATION

As discussed in the previous sections, in this study, simulation and optimization are con-
sidered as a whole problem, instead of two separated problems. This is illustrated in
figure 2, which depicts the relationship among modeling, simulation, optimization, and

Figure 2: The Unified Simulation and Optimization Framework

The Unified Simulation & Optimization Framework
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machine learning. From this picture, we can see that modeling is not only the foundation
for simulation and optimization, but also the enabler for machine learning.

For simulation purpose, the major focus of modeling is to specify the resource model,
the process model, and facility layout, etc. The modeler software module provides a
design environment for the modeler people to conveniently set up the simulation model
through easy to use graphical user interfaces (GUI). Basically, they can pick objects
from the object library, set up connections between objects, and input the properties for
the objects and connections.

For optimization purpose, the simulation and optimization model must specify the pos-
sible alternatives. Thus, the simulation-based optimization engine (SBOE) can try differ-
ent combinations and find the best combination. Instead of trying to make any judgment
at the design time, the modelers specify all possible combinations in the model. The
SBOE will figure out which combination is good.

Due to the combinatorial explosive nature of the problem, the number of possible com-
binations could be huge, for example, in thousands, millions, billions, or even more. It is
not possible to simulate and evaluate each possible combination. How to quickly find
high quality solutions from the huge solution space, is a real challenging problem that has
intrigued the scheduling research community into spending a huge amount of effort to
tackle it, as discussed earlier.

To get a high quality solution with limited computation effort, the SBOE needs to intel-
ligently choose the most promising combinations to simulate and evaluate, instead of
blindly trying out some random combinations. To make the SBOE intelligent, machine
learning will be necessary.

For machine learning purpose, the SBOE needs to record the decision-making history
for each simulation. For confirmed good solutions, each decision-make case will become
a training example. In the future computation, the SBOE can try to replicate the best
practice by making use of previous experience. Artificial Neural Network (ANN) is a
very useful tool to fulfil the machine learning task. ANN has been widely adopted in a
wide range of applications, and many mature ANN program libraries are available.

The accumulated knowledge cannot guarantee each decision is always the best. Here the
belief is: although no perfect knowledge can be acquired for the decision making, the
knowledge can effectively reduce search effort, while search can compensate for the lack
of knowledge (Fox, 1991).

To effectively model the alternatives for optimization, and enable machine learning, the
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following decision-making primitive is proposed at the object level:
make_decision (decision_name) among (list of alternatives) based on (relevant
information). -

This decision-making primitive enables the modeler to specify what kind of decision needs to
be made, what are the alternatives, and what information is relevant to this decision making.

This decision primitive enables the SBOE to record sufficient data for machine learning.
At the same time, it enables the SBOE to improve the decision-making quality by apply-
ing the previously learned decision-making knowledge.

No programming skills are required for the modeler people, and théy do not have to be
experts in optimization and machine learning. The modeling method proposed in this
study provides sufficient flexibility, and meanwhile requires minimal skills and effort.

SIMULATION AND OPTIMIZATION

For simulation-based optimization, there are three important design considerations:
5. Muiltiple simulations will be performed for different decision-making combi-
~ nations. ,
6. Itis not practical to simulate all decision combinations, because the number
of possible combinations can be very large.
7. Machine learning is essential for simulation-based optimization.

Figure 3 depicts the scope of the SBOE, which is by nature a generic processor. SBOE
Figure 3: The Simulation-Based Optimization Engine (SBOE)
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Figure 4: The sets of system states
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can simulate the behavior of a complex system by progressively changing the system
state from the initial states to the future states. The domain specific logic is programmed
in the object library, and the decision-making knowledge is captured into the knowledge
base. The captured knowledge can be used to guide the decision-making.

As SBOE simulates multiple decision-making scenarios, the single initial states will be
developed into multiple different future states. Therefore, SBOE maintains a population
of system states, and manages them with the following four non-overlap sets:

1.

2.
3.

4.

The running set: contains the system states for the simulations that are ready
to run.

The final set: contains the system states of the finished simulations.

The evaluation set: contains the system states for the simulations that are
waiting for performance evaluation and filtering.

The backup set: contains the inferior simulations are going to be discarded.
In some cases, some of them may be recycled to the running set.

At the very beginning of the simulation-based optimization, there is only one single sys-
tem state (the initial state prepared by the pre-processor) in the running set. The control
logic of the SBOE is depicted in figure S. It contains the following steps:

1.

2.

Check whether the running set is empty or not

a) If not, pick a simulation (system state) from the running set and run the
simulation; depending on the simulation result, after running the simula-
tion, the system states may be moved to the finished set, the evaluation
set, or backup set, or may be destroyed. (Details will be discussed later).

b) If yes, next step (step 2)

Check whether the evaluation set is empty or not

a) Ifnot, evaluate and compare the performance of the simulations (system
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Figure 5: The control logic of SBOE
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states) in the evaluation set. For the simulations (system states) with good
performance, move them to the running set. For the simulations (system
states) with inferior performance, move them to the backup set. If the
backup set exceeds the maximum size, discard some of them.

b) If yes, next step (step 3)

3. Check whether the final set contains enough number of simulations.

a) Ifyes, done

b) Recover some simulations (system states) from the backup set, and go to
step 1.

Figure 6 depicts the data structure for storing the system state, which includes three
parts:
1. The generic part: the global data, the object data, and the execution stack
2. The simulation part: system clock and event list
3. The decision-making part: quota, the decision-making alternatives, the deci-
sion-making history

The first part is to support generic computation, the second part is to support discrete

event simulation, and the third part is to support decision-making, machine learning and
optimization.
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Figure 6: The Data Structure for System State
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For each simulation instance, its system state contains all the information for running it.
The system state can be quickly and easily copied into multiple ones. Thus, at a decision-
making point, the SBOE can continue to simulate multiple decision-making scenarios,
without having to re-run the simulations from the initial state for each decision-making
scenario. This can significantly reduce computation effort.

The working mechanism of the SBOE is illustrated as Figure 7. The main logic includes
the following steps:

1.

Check whether the system state is marked as finished

a) Ifyes, move this system state into the final set, and end this simulation

b) If no, next step (step 2)

Check whether the system state is marked as to be evaluated

a) Ifyes, move the system state to the evaluation set, and end the simulation

b) If no, next step (step 3)

Check whether there is a decision needing to be made, by checking whether

there are decision making alternatives stored in the decision-making alterna-

tives area.

a) If yes, then the SBOE will split the current system status into multiple
copies. For each copy of system state, push a different alternative action
into the execution stack. Move the copied system states in to the running
set.

b) If no, next step (step 2).
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Figure 7: the simulation logic of the SBOE
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4. Check whether the execution stack is empty.
a) Ifyes, gotostep5
b) If no, go to step 6.

5. Check whether the event list is empty
a) If yes, end simulation and move the system state into the final list.
b) If no, pick up the nearest future event from the list, advance the simula-
tion clock to the time of the picked event, and then execute the event. This
will call the program code of an object in the object library. After running the
object program code, go back to step 1.

6. Pop-up an action from the execution stack and execute the action. Similar to
execute an event, this will call the program code of an object in the object
library. After running the object program code, go back to step 1.

I

To hedge the computation effort, a quota allocation mechanism is designed. Each simu-
lation (system state) is assigned a quota, which means the maximum number of this
simulation (system states) which can be split from this simulation. At a decision making
point, one simulation can be split into multiple simulations, the quota is also split into
multiple simulations, but the total number of quota remains unchanged. With the quota
mechanism, we can limit the total number of simulations performed, and thus ensure that
the computation effort is controlled within an acceptable level.

After performance evaluation, the quota will be reallocated. High quality simulations
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will get more quota, inferior simulations will get less quota. Poor quality simulation will
be moved to the backup set.

With the above described computation method, the SBOE can perform simulation. Starting
from one single initial state, the SBOE can develop multiple final future states. The
simulation results will be further processed by the post-processor, which converts them
to easily comprehendible format, such as reports, charts, animations, etc., to enable the
user’s ability to easily get useful information from the simulation and optimization re-
sults. ‘

THE OBJECT LIBRARY

We have seen that the SBOE is very generic. The rich functionality and flexibility of the
simulation comes from the object library. For each object, it can access the system state
through a set of API (Application Programming Interface) functions. At the same time,
each object must expose its functionality to the simulation engine by implementing the
predefined interfaces. Thus the SBOE can invoke the objects, and the objects can access
the system states through the SBOE.

One important thing the object developer needs to keep in mind is each object must keep
all its information in the object data area of the system states. The object cannot keep
information through the storage mechanism provided by the OO language, such as C++
member variables. This is because the system states can be copied into multiple copies.
The storage mechanism provided by the OO language cannot support the system state
copy mechanism of SBOE.

With such a design, the object developers have unlimited flexibilities to implement any
possible functionality to simulate complex dynamic systems. At the same time, the devel-
oper does not need to worry about the optimization and machine learning, as it is imple-
mented at the SBOE level, instead of the object level.

Section 5: THE KNOWLEDGE BASED LEARNING MACHINE

As discussed in the previous sections, each simulation will keep a full record of the decision
making history. Each decision-making record includes the following information:

1. The object ID

2. The decision making name

3. The alternative action list

4. The selected alternative action
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5. The relevant information for this decision making

The knowledge base is organized as a map; the key of each map item is: “object id +
decision name”; the value of the map item is a trained ANN instance. The purpose of the
ANN is to learn the association between the related information and the decision making
result (the selection of the alternative action).

At the beginning, the KB is empty. By performing simulation-based optimization compu-
tation, the KB can be expanded by the decision-making history of the high quality solu-
tions. Through the post-processor, the users can rate the simulation results, and thus the
user’s professional judgment will affect the training examples, and thus the user's prefer-
ence can be captured into the knowledge base. Such implicit knowledge is unusually
difficult to be explicated formulated. This is one important advantage for the machine
learning. .

After the KB is trained, the SBOE can make use of the KB to guide its decision making.
At each decision making point, the SBOE first locates the ANN by the object ID and
decision making name, then it consults the trained ANN on which alternatives are good
choices based on the related information. The relative score provided by the ANN for
each alternative will be used for filtering the alternatives, and the allocation of quota.
Thus, the SBOE can make sure that the computation effort always focuses the most
promising possibilities.

INTEGRATION WITH THE EXISTING IT SYSTEM

Although often overlooked by academic researchers, the integration with the existing IT
system is an important issue for the real-world implementation of a practical system. In
this aspect, the proposed system provides three modules to help with this problem: the
pre-processor, the controller and the adapter. When designing the object library, integra-
tion with the existing IT system is an important design consideration. The object library
provides functionality and flexibility, and at the same time, eliminates the barriers for
effective integration of the proposed system with the existing IT system.

CONCLUSION

In this paper, a unified simulation-based optimization framework is proposed, and a
reference design of the system is described in detail. The proposed system is featured by
the following characteristics:

1. Systematically consider simulation, optimization, and machine-learning into a
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unified framework.

2. Object-orient modeling is employed to provide extensibility and flexibility

3. A decision-make primitive is proposed for modeling and machine learning

4. ANN-based machine learning is utilized to improve solution quality and re-
duce computation effort.

5. Implementation procedures, the responsibility of different groups of related
people are explored.

6. Integration with the existing IT system is considered.

At this point of time, this study remains at the prototype stage, more effort is needed to:
1. develop a practicable software solution
2. evaluate and demonstrate its feasibility and performance with some example
problems
3. work with the industry to test it out in real-world settings
4. reduce computation time by employing parallel computation for better sup-
port of real-time application _

The author wishes that this research work could be helpful to academic researchers and
industrial practitioners, and that it could promote further research and practice in the
simulation-based optimization research area.
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